Exhibitor Press Releases

Sample

Loading
  • Vertiv Identifies Top Five 2019 Data Centre Trends: Edge Will Drive Change

    04 Dec 2018 Giordano Albertazzi, president for Vertiv in Europe, Middle East and Africa

    The edge of the network continues to be the epicentre of innovation in the data centre space as the calendar turns to 2019. 

  • Hydro66, founded in 2014 is a pioneering, ultra-efficient, green-field colocation data center located in Boden, Northern Sweden. A key objective of the company was to design their new Nordic data centre to operate at a power usage effectiveness (PUE) – the ratio of total amount of energy used by a data centre to the energy delivered to computing equipment – of less than 1.05. This could only be achieved using fresh-air cooling (EcoCooling ECT10800 Nordic Cooling range) supported by the most efficient uninterruptible power supply (UPS) and power distribution.

    Hydro66 decided to use a direct ventilation system supplemented by evaporative cooling (EcoCooling ECT10800 Nordic Cooling range). The equipment is modular and installed internally, thereby avoiding planning issues. Electronically commutated (EC) axial fans are used for air movement. With very low pressures, axials can also accommodate the larger flow rates and pressure, and their motors are efficient, quiet and have simple speed controls. The efficiency of a fan is approximately proportional to the cube of the speed. Data centres require redundancy of N+1, 2N or 2(N+1), so equipment is operated at part capacity.

    By controlling all of the EC fans as a group – and reducing the air flow rate to that required by the IT equipment reductions in consumer fan power can be achieved, producing remarkable efficiencies. On average, 1MW of IT equipment will require an airflow of 90m³/s of air at compliant temperatures. Since the data centre has both redundancy and spare capacity, the ventilation rate is reduced and further savings are made. For example, running a fan at 80% reduces energy use by half and, at 50%, to 12.5%. An intelligent control system is used by Hydro66 constantly to optimise the fan energy use to reflect actual cooling requirements in a dynamic environment. On warmer days, the adiabatic cooling is enabled, bringing the supply air down to approach the wet-bulb temperature of the ambient air. In Boden, this means the supply air will never exceed 22C, which is compliant with all standards without the need to use additional mechanical refrigeration.

     

    Hydro66 had a very clear vision on how we could bring a new model to colocation – one where the customer wins significantly on both cost and on sustainability. We were fortunate to discover EcoCooling who were able to exceed our expectations. Not only in terms of pure efficiency of their equipment, but more importantly their desire and capability to enhance their solutions to our specific use case.

    ALEX CHIOLO, HYDRO66 OPERATIONS DIRECTOR

     

    The use of adiabatic cooling will increase the moisture content, while reducing dry-bulb temperature, so increasing the relative humidity of the air. With reference to the ASHRAE 2011 Thermal Guidelines, high relative humidity (RH) will normally only cause corrosion with other contaminants in the air. If gases such as sulphur or chlorine are in the ambient air, these, plus high RH, can cause corrosion. Boden has ‘clean’ air because there are no local industries producing contaminants.

    The combination of high RH and dust or particulates can also create problems, so all incoming and recirculating air is filtered. In relatively clean conditions such as those in Boden, EU4 is a suitable level of filtration. Increasing this can result in significant increases in capital cost, maintenance requirements and fan energy use. A direct fresh-air system

    A direct fresh-air system operating in arctic conditions at the coldest time of the year can result in very low RH in the data centre. Low RH, in conjunction with other factors, can cause problems with electrostatic discharge (ESD), which can damage IT equipment. EcoCooling specially designed Nordic cooling system incorporates a recirculation loop, where – in low RH conditions – the warm air from the data centre is passed over the adiabatic pads to humidify the air above the ASHRAE 2011 Thermal Guidelines’ allowable level of 20%. This novel solution, therefore, uses the adiabatic pads for two functions – cooling in hot weather and humidification in cold weather conditions.

    Hydro66 has constructed a low capital cost, flexible data centre, which has achieved a PUE of less than 1.05. The direct fresh-air Nordic cooling system complements the Download the data sheet for the ECT10800 internal evaporative cooler with humidification.  More information on data centre cooling

  • A new 120m2 primary DC helping clinicians and staff deliver the highest standards of care at Wrexham Hospital

  • A Tale of Two Datacentres

    27 Nov 2018 Article originally featured in DCNN November 2018

    A Tale of Two Datacentres

    27 Nov, 2018 | Articles

    “It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness…” Charles Dickens, A Tale of Two Cities.

    With apologies to Charles Dickens.

     

    Reducing Risk

    The datacentre manager is responsible for maintaining their, or their clients’ essential systems and processes 24/7.

    Power delivery is therefore critical and power protection systems must be available every second of every day and so maximizing system availability must be the overriding objective of any installation.

    Availability can be defined as the probability that an item will operate satisfactorily at a given point in time, crucially it includes both preventive and corrective maintenance downtime. It is most often represented as the percentage of system uptime achieved in a year and by the equation of mean time between failure (MTBF) divided by mean time between failure, plus the mean time to repair MTTR. MTBF can be mitigated by overall system design, i.e. removing single points of failure and MTTR by product design. Over the years, many improvements have been made in relation to UPS technology and configurations to increase availability.

    Data centre managers are naturally risk averse people as the consequences of going ‘off line’ even for a few seconds can incure significant financial penalites relating to service level agreements. Down time can result in loss of clients, loss of reputation plus the incalcuable cost of missed revenue of potential cients shopping for a more reliable alternative. A pretty stressful occupation!

    The Human Element

    So why in the age of wisdom, do we still see headlines relating to large data centres power failures? Even if the most advanced technology is employed to create a reslient and highly available UPS system, there is still room for human error and there are many published statistics indicating the percentage of failures caused by such. Of course, problems caused by lack of training is a completely separate issue and no-one can mitigate against wanton mailce. However it still appears that most of the high-profile incidents of data centre power outages have been linked to human intervention – accidental or otherwise.

    Secure access of control rooms limit the chance of outside interference and thorough training and proceedures – including the two man rule – reduce the risk of mistakes being made. Data centre managers put proceedures and training in place to mitigate these risks as far as humanly possible but how can technology help?

    Technology

    From a technological point of view, building redundancy into the UPS system reduces the risk of the system going off-line and increases availablity.

    As data centres have evolved from using a single UPS to parallel systems, availablity has increased. The higher the availability, the lower the downtime. The introduction of redundancy and low MTTR by rapid hot swap modular designs now means with some of the UPSs on the market, six-nines (99.999999%) availability is possible. This equates to some 32 seconds downtime over a year, a relatively small value in time but to a data centre it is an eternity. So how can we increase this availabilty percentage even higher?

    Distributed Active Reduntant Architecture

    Following extensive failure analysis research and insights gathered from 25 years’ of field experience working with a large number of data centers and other critical environments, CENTIEL’s power protection solutions are reaching 9 Nines levels of availability, reducing downtime risk and avoiding costly errors.

    Distributed Active Reduntant Architecture (DARA) is a concept introduced by CENTIEL into its 4th generation UPS. This active-redundant technology alongside the elimination of potential single points of failure and the true modular hot swap capability allows CENTIEL’s CumulusPower™ to deliver an industry leading availability of 9 nines (99.999999999) to fulfill the needs of the most critical power applications. Cumuluspower takes downtime from seconds, to the milliseconds level.

    A Tale of Two Data Centres

    Imagine Dave managing a large datacentre in a remote location selected specifically because of the low cost of real-estate and the prevailing cooler ambient tempreatures helping to reduce the cost of cooling. A modern modular UPS has been installed to provide critical power protection and ensure the availablity of the data for numerous high-profile, house-hold name clients.

    Dave well understood choosing a stadalone type UPS where the main component parts of rectifier, inverter and static switch are modular: i.e. can be easily removed/instered. It meansif there is a problem with say the recitifier, it can be swapped easily. However, if any one of these component did fail then the whole UPS functionality goes down with it.

    So Dave chose a modular system which includes the rectifier and inverter within individual power modules. However, one day the UPS display panel indicated an alarm associated with the single centralised static switch and Dave immediately put out a call to the service provider to attend to investigate. It should only have taken a few moments to swap out but, due to the datacentre’s location getting to the site to replace took the maintance engineer several hours. During that time the system lost its ability to transfer to to static bypass. Dave felt very exposed sitting there looking at the alarm panels and red alarm LED waiting for the engineer to arrive. Having this job is sometimes not the best of times.

    Jim too manages a big data centre in another remote location. Jim understands the concept of decentralised architecture and how it increases system availability. He worked with his trusted advisors at CENTIEL to select a power protection system with the highest level of availability and installed their true modular UPS with DARA.

    With Jim’s UPS all the elements of rectifer, inverter and static switch are contained within each individual module. He knows if a static switch fails in one module then he has not lost the ability to transfer to static bypass via the rest of the modules in the UPS frame.

    One thing that was always at the back of his mind was the communciatons between modules. Surely duplication and redundancy of UPS components must also apply to this aspect of the system design? The most simple communications bus is a single cable. If this breaks or becomes disconnected, the entire system could potentially be compromised. For this reason, the ring circuit was introduced. If the circuit breaks the signals can simply communicate the other way around the ring.

    But Jim being the natural risk averse person that he is, wanted even more assurance and wanted to see how this was being addressed by the designer. CENTIEL’s Triple Mode communications bus was the answer. Like its name suggests, there are three paths of communication between UPS modules, and parallel frames, with three separate ring circuits, and three brains in each module communicating with the three brains in all the the other modules – it’s the belt, braces and buttons approach.

    Jim likes the image of comparing Triple Mode to a tightrope walker. If a tightrope breaks, the consequences will be dramatic and far-reaching. In the same way, a single communications bus is far more precarious than a Triple Mode ring connection which is more like a bridge with multiple supports. Here potential single points of failure are removed. Even if one or several bridge struts fail, the others will support the load.

    While we all understand what the D and R mean in DARA, distributed and redundant through decentralised parallel independent UPS modules with triple communications what does the the A stand for?

    A is the automated democratic decision making process which is another real differentiator in CENTIEL’s 4th generation true modular UPS. The sum of the decision determines the total system action or reaction to any issues.

    In Dave’s UPS system in our first datacentre example, if five modules share a load, if one has a problem it may signal all the modules go to static bypass. With Jim’s system, democratic decision making recognises a fault in one module and the other four will remain online while the problematic module is switched off automatically, allowing for replacement or repair while the load is still protected. No single component takes decisions for the whole system.The automated process removes some of the human element which has led to the majority of datacentre power failures in recent years.

    A static switch in a module goes down. Jim is alerted to the single module fault as his critical facilities continue to be maintained by the other UPS modules. Jim phones the engineer so it can be replaced while he grabs a quick coffee. Having this job is the best of times.

    Conclusion

    Naturally, often cost comes into the decision making process when purchasing a UPS. However, the purpose of a UPS system must be to protect critical loads with the highest level of availability. There must be no potential single points of failure. Therefore, it is important to check the configuration and the definition of a modular system carefully and seek expert advice before purchasing.

    At CENTIEL our design team has been working with data centres for many years at the forefront of technological development. We are the trusted advisors to some of the world’s leading institutions in this field. For this reason, we have developed our pioneering 4th generation true modular UPS system CumulusPower which offers offer industry-leading availability of 99.9999999% (nine, nines), with low total cost of ownership (TCO) through its Maximum Efficiency Management (MEM) and low losses of energy.

    Article originally featured in DCNN November 2018

     

     


  • Saft and Socomec deliver state-of-the-art backup power system for Total’s supercomputer environment

           Innovative hot-swappable uninterruptible power supply (UPS) integrates high-performance Saft lithium-ion (Li-ion) batteries

    ·       Electronic management and high reliability enable Total to protect the operations of its High Performance Computer (HPC) data center

  • Sam Rodriguez, Chatsworth Products (CPI) senior product manager, was recently interviewed by Cabling Installation & Maintenance magazine about the importance and differences of grounding and bonding when deploying cabling systems in nontraditional and harsh environments.

  • DataCool small bore hoses

    19 Nov 2018 Geoff Kelley

    In addition to the popular DN25 DataCool hoses a small bore version has now been added with a 6mm bore version shown with ultraFLOW non spill quick connect couplings alongside a 25mm bore DataCool hose.

     

  • Antimicrobial Hose Assemblies

    15 Nov 2018 Geoff Kelley

    The FleXprotect range of hoses when tested in compliance with ISO 22196 at independent laboratory IMSL, VH-HYT Si+ was effective in reducing four known bacterial causes of Hospital borne infections by over 99%.

  • Many businesses and government agencies are increasing their ability to monitor activities by installing equipment. This includes security cameras in outdoor locations where they are exposed to environmental conditions. The ability to protect sensitive electronic devices in these conditions could result in saving property—and even lives. The enclosures that house this equipment should be high quality, providing years of environmental protection.

    Chatsworth Products (CPI) is trusted around the globe to help protect their technology investments. CPI's RMR® Industrial Enclosures are often selected for security installations because of their high-quality seals, and the customization CPI can provide to ensure the enclosure matches the equipment.

  • BetterBox attains Cyber Essentials accreditation

    14 Nov 2018 BetterBox Marketing

    BetterBox are proud to announce that we have attained a certificate of assurance for compliance of the Cyber Essentials scheme.  This further demonstrates to our customers and partners that we take cyber security seriously, and that our cyber safeguards act in accordance with Government-endorsed security standards.

  • Availability of power is essential in today’s ever-increasing digital world and IT business critical environments. As well as the obvious interruption to power to the critical load, power outages can also potentially cause physical damage to equipment and essential data can become corrupted or inaccessible leading to issues keeping the business going long after the lights have come back on. Concerningly, it has been reported that power outages in the UK are on the increase.

    The solution is to implement a reliable uninterruptible power supply (UPS) and in today’s increasingly competitive environment maintaining operational efficiency is essential to keep running costs down.

    Over the last 10-15 years the biggest driver for UPS development has been efficiency. By utilising a more efficient UPS unit, and units within larger resilient systems, minimises OPEX, reduces carbon footprint attracting Government funded tax incentives, and aids Corporate Social Responsibility (CSR). So what are the main considerations when considering an efficient UPS solution?

    Firstly, all manufacturers will claim very impressive efficiency figures for their UPS units, initially the marketing “glossies” focussed on a maximum efficiency value with the UPS operating at 100% capacity, although in reality a UPS unit/system never operates at such a figure. A typical single UPS unit may operate around 50-70%, although even this is generous. However, within a resilient system offering redundant parallel UPS units the individual load capacity is often much lower, 20-30% is common. Therefore, it is important to look at the efficiency figures at the range in which the UPS will be operating in. Transformerless UPS units greatly aided this drive with their flat efficiency curve down to 25% capacity but even these tailed off quite significantly below this figure. The latest generation of UPS system are now achieving 95.5% efficiency at load capacities of only 10%! An amazing success when compared with legacy systems of only a few years ago. A good source of information is the Energy Technology List, a completely independent list which continues to raise the standards of UPS efficiency, look to see if your UPS is listed.

    An inefficient UPS system generates heat, increasing your UPS efficiency decreases the cooling requirement to remove this heat.

    Replacing legacy UPS systems has become a powerful argument when comparing the potential OPEX saving with installing the latest more efficient UPS units. One such recent replacement was on a traditional multiple unit system, offering N+1 resilience, comprising of three 250 kVA UPS units running in parallel.

    The site load averaged only 200kVA. With all UPS units sharing this load, each individual unit was supporting 67KVA and therefore operating at 27% of its capacity. As the units were some 15+ years old, and of the legacy transformer-based design, the overall electrical efficiencies were measured at only 80-85% and you have to add the heat losses which were significant. .

    By calculation the savings in OPEX was an amazing £62,000 per year, a CO2 reduction over 5 years of > 850 tonnes with a carbon neutral offset of some 1,350 trees!

    So, what do we need to look at when considering a UPS system with regard to operating costs. The first step is to find a system with the highest efficiency for online operation.

    As systems are not run at 100% load all the time, check the UPS unit reaches peak efficiency when operating at your own sites expected load, taking into account the resilient nature of the topology, ie multiple UPS units operating in parallel. Select a technology that offers a flatter efficiency curve across the widest load range. CENTIEL’s UPS technology is 95.5% efficient even at l0% load.

    So, let’s get back to our 3 x 250KVA example and it’s replacement system. With a new modular system based on CENTIEL’s Distributed Active Redundant Architecture (DARA), with twelve 50kVA modules installed, each module would be at 33%, still quite a low figure but the solution was also dictated by the existing electrical infrastructure available.

    At these values of load the Centiel system was at 96.75% efficient. Over five years, the calculated OPEX savings are >£300,000! With the Modular concept ongoing maintenance costs are also minimized further reducing the total cost of ownership and crucially there are no single points of failure. Significant savings on operating and maintenance costs, mitigation of risk, with the highest availability of power protection.

  • DataCool water hose assemblies

    12 Nov 2018 Geoff Kelley

    The DataCool range of hose assemblies has been developed by Hydraquip specifically for the DC market to overcome some of the most common issues faced by designers, installers and developers when choosing a suitable hose for these environmenmts.

  • WIth water cooling becoming the preferred method of cooling in many DCs the worry can be over potential leaks and the catastophic damage they could cause and is often a major concern for DC operators.

    The ultraFLOW range has been designed to provide a series of lightweight couplings with a flat face design to guarantee no spill, high flow and low pressure drop for the lowest pump pressure.

     

  • Developed in conjunction with a major UK supplier of DC cooling systems the Hydraquip DataCool hose assemblies have been supplied since 2011 into numerous DCs around the world with in excess of 5,000 assemblies currently in use (as of November 2018).

     

  • Metal hose assemblies

    12 Nov 2018 Geoff Kelley

    Hydraquip manufacture convoluted stainless steel hose assemblies from DN06 to DN250 from their two UK factories for OEM in a wide and varied range of industries both in the UK and over seas.

  • Braided EPDM H&V hoses

    12 Nov 2018 Geoff Kelley

    Hydraquip's reputation as a leading supplier of braided rubber hoses for h&v applications extends well beyond the shores of the UK with over 30,000 being supplied for a major Australian development.

  • Chatsworth Products (CPI) and Corning invite you to join a free webinar on November 15th  at 6.00p.m. BST titled, "Infrastructure Strategies to Enable Smart Buildings." 

    Presented by CPI Sr. Consultant, Steven Bornfield, and Corning Optical Communications Solutions Engineer, Steve Letkes, this webinar will discuss the growing demand for new and existing buildings to be smarter and more connected than ever, and how more equipment will be placed at the edge of the network. Bornfield will explain how this new reality may mean re-evaluating your infrastructure planning including storage, cabling and cooling built specifically for harsh environments.

  • The new Austin Hughes Brochure is now available to download. Providing an overview of the full range of rack mount solutions available including power distribution and power monitoring solutions that ...
  • 5G, or 5th generation cellular wireless networking, is not just an increase in speed over 4G LTE, it is a complete redesign of the cellular wireless network. 5G promises orders of magnitude increases in bandwidth for users and to eventually enable remote sensing for the most complex IoT applications. But first, the network needs to be updated and expanded. 5G will involve hundreds of thousands of sites, millions of users and eventually billions of things. Is your network ready? 

  • CHATSWORTH PRODUCTS

    24 Oct 2018
    What is Product Designer? This free, online configuration tool will guide you through the steps necessary to create industrial enclosures or select cabinets that meet your application needs. It provid ...
  • When developing the JAEGGI ADC High Density, achieving maximum power density was a key priority. These units are therefore ideal for high-power applications such as the cooling of IT systems.

  • In many data centers, particularly multi-tenant facilities, physical security must meet legal and corporate data security requirements. Traditionally, server cabinets use keyed locks, which presents several challenges, including maintaining accountability for keys and preventing unauthorized access. One solution is to use electronic locks to provide remote control and monitoring of locks, including setting alarms and recording access attempts. However, there is a perception that these systems are too expensive.

  • Leading UPS manufacturer, CENTIEL, has confirmed it has a growing global installed base of its three-phase, modular UPS system, CumulusPower. Launched for the first time in the UK just over a year ago, CumulusPower known for its “9 nines” system availability and low total cost of ownership, has now been installed in datacenters and comms rooms in over 60 countries across 5 continents. More than 50 MW of critical power loads are now protected with CumulusPower in locations across the world including: the UK, Singapore, Australia, Germany, Spain and the Czech Republic.

    Mike Elms, sales and marketing director, CENTIEL UK Ltd explains: “Although a relatively new company, CENTIEL is a Swiss-based UPS manufacturer whose team of designers have experience that covers the last four decades. They were responsible for the design of the world’s first three phase transformerless UPS and the world’s first three phase modular UPS.

    “As a result, the introduction of our 4th generation UPS CumulusPower to the market place has been met with unprecedented enthusiasm on an industry wide basis,” continues Elms. “The main benefit clients are seeing is the system’s class-leading availability of 99.9999999%. CumulusPower has been developed with a unique Intelligent Module Technology (IMT), with a fault-tolerant parallel Distributed Active Redundant Architecture (DARA). The excellence in system availability is achieved through fully independent and self-isolating intelligent modules – each with individual power units, intelligence (CPU and communication logic), static bypass, control, display and battery.

    “In addition, the solution has been designed to reduce the total cost of ownership through low losses: the high double conversion efficiency of 97% at the module level means it is currently the best solution available to protect data centre infrastructure as its configuration also reduces downtime risk, avoiding costly errors as well as increasing energy efficiency.

    “Our most popular frame is the CP100 which incorporates not only the UPS modules themselves but also the internal batteries providing 10 minutes run-time. Space can be saved as the need for external batteries is negated. For larger datacenters the 10x60kW modules enabling a configuration up to 540 kW N+1 provides the largest single modular frame size for a UPS on the market.

    “As we look to the future, developments in battery technology with the introduction of Li-ion will offer further benefits because they are smaller, lighter and operate at higher temperatures. Not all systems are Li-ion ready, but they need to be! CumulusPower is Li-ion ready, so our clients are finding both their power and investment in a UPS system are fully protected for the future with CENTIEL.”

    For further information visit https://centiel.co.uk

  • Etix Blockchain, a division of Etix Group dedicated to provide colocation services for HPC and Blockchain applications and mining as a service capacity, specified a large number of EcoCooling ‘3 CloudCooler Group’ modules for their new facility in Iceland. EcoCooling were selected based on the success of their CloudCooler Range in other installations across the region, which has become a hotbed for data centre development mainly due to competitive power prices and cool climate. 

    With its ambient air conditions Iceland is an ideal location for data centers using the EcoCooling solution. A number of award winning data centre and cryptocurrency mining operators in the Nordics and Arctic circle have used EcoCooling solutions to achieve unparalleled cooling efficiency.  

     

    “Opening two large-scale Blockchain data centers in Iceland in a very short period of time, we had to call on a trustworthy partner with solid experience to support us in this challenge. We have been cooperating successfully with EcoCooling to provide our customers highly-efficient data centers.” 

    Antoine Gaury, Head of Etix Blockchain

     

    “We are very excited to be providing the cooling equipment for Etix Blockchain in their new facility in Iceland.  Our new CloudCooler Group (rack, cooling and containment) solution is a true plug and play mining infrastructure module. The simple design significantly increases speed of installation so operators like Etix Blockchain can scale up their facilities in an extremely cost effective and energy efficient way.” 

     - Alan Beresford, MD, EcoCooling

     

    The ‘3 CloudCooler Group’ module has been developed off the back of these installations to be the most cost-effective option for rapid deployment developments in remote locations. The design complements Etix Blockchain’s scalable data centre design strategy while also maintaining world class cooling efficiency.

    Each group installed contains 3 ECV CloudCoolers®, containment, power supply and racking.  The ECV coolers provide 54,000m3hr of air directly to the miners while the Group design was chosen for its simplicity and scalability. The full solution including containment took just 2hrs to assemble from flat pack.

    Estimated performance: The average energy use to support 5.2MW of computing load is estimated to be approximately 173kW as an annual average with a peak of 340kW.  This represents a pPUE of 0.033 for the cooling system.

    ECV CloudCoolers - Free Cooling Units

    ECV CloudCoolers (free cooling) units can maintain a reliable operating environment for computing devices in Iceland due to the cold climate.  The ambient temperature rarely exceeds the supply temperature required by the computers.  This means filtered, external air can be used all year round to cool the facility, eliminating the need for a supplementary cooling system.

     

    About EcoCooling

    EcoCooling has extensive experience in terms of cooling blockchain systems, cryptocurrency miners as well as conventional IT equipment both in Arctic and temperate climates. Using fresh air ventilation systems, with or without adiabatic cooling, compliant conditions are maintained for ~40kW cooling energy per 1MW of installed miners.  This minimises both operating costs as well as the cost of the power infrastructure to support the cooling system.  www.ecocooling.co.uk

     

    About Etix Blockchain

    Etix Blockchain offers colocation services for HPC and Blockchain applications, and Mining as a Service capacity through a network of data centers located in the Nordics. Etix Blockchain benefits directly from the expertise developed by Etix Everywhere for the data centre industry and from the security products developed by Etix Labs. www.etixblockchain.com

     

    About the CloudCooler Range

    With the ability to withstand cold climates, the UK manufactured CloudCooler® products come fully equipped with exiting and innovative technologies, proving a perfect match for the many emerging and established European data centres looking to capitalise on the green energy available in the Nordics.

    The CloudCooler® units provide a constant supply of filtered air at controlled temperatures.  Filtration plus the avoidance of temperature fluctuations maximise the reliability of the computers and other IT equipment.  Utilising these key areas provide a dependable platform to maintain the maximum availability of mining power.

     

Latest News

  • 13-Nov-2019
    16:15

    Content delivery networks (CDNs), geographically distributed networks of servers working together to deliver fast internet content delivery, provide a dependable content distribution system for many websites and applications, including webpages, video, games, downloadable objects, streamable media, and even software updates.

    CDNs are extremely popular among brands and website owners who need to deliver their content fast to a global audience. Indeed, according to data from BuiltWith, over 80% of the top 10,000 websites are using a CDN, with the global market predicted to grow from $10.9 billion in 2018 to $24.9 billion by 2025.

    The post Why media services need a strong multi-CDN strategy appeared first on Techerati.

  • 13-Nov-2019
    15:23
    Blockchain truth

    A Google search for “blockchain” brings up nearly 300 million results. Try finding “understanding blockchain” and you’ll find a mere 152,000 references.

    And there’s the innovator’s dilemma. While there’s no shortage of commentary on blockchain from supporters as well as detractors, the clash of opinions, information and misinformation has made it difficult for even a general tech enthusiast to figure out what blockchain is and isn’t.

    These are five of the most prevalent myths debunked.

    The post 5 blockchain myths debunked appeared first on Techerati.

  • 12-Nov-2019
    17:52

    The Labour Party has said it experienced a “sophisticated and large-scale cyber attack” on its digital platforms, which was later revealed to be a DDoS attack.

    A Labour source confirmed that the attack was DDoS in nature, meaning that the perpetrator attempted to cause its digital platforms to crash by flooding them with so much traffic from various sources that services struggle to load properly.

    The post What caused the Labour Party cyber attack? appeared first on Techerati.

Sponsors

Platinum Sponsor

Gold Sponsors

Theatre Sponsor

Registration Sponsor

6th Generation Data Centre Sponsor

Hosted Buyers Day Sponsor

VIP Lounge Sponsor

Lanyard Sponsor

Exhibitor

Partners

Headline Media Partner


 

PR Partner


 

DCW Education Partner


 

Event Partners


 

Media Partner


 

Media Partner


 

Media Partner


 

Media Partner


 

Media Partner


 

Media Partner